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Therefore,

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, (7.6.3)

and for P =
[
x1 |x2 | · · · |xn

]
,

y = Pz = z1x1 + z2x2 + · · · + znxn =
n∑
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(
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xj . (7.6.4)

This means that every possible mode of vibration is a combination of modes
determined by the eigenvectors xj . To understand this more clearly, suppose
that the beads are initially positioned according to the components of xj —i.e.,
c = y(0) = xj . Then c̃ = PT c = PT xj = ej , so (7.6.3) and (7.6.4) reduce to
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{

cos
(
t
√

λk

)
if k = j

0 if k �= j
=⇒ y =

(
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xj . (7.6.5)

In other words, when y(0) = xj , the jth eigenpair (λj ,xj) completely deter-
mines the mode of vibration because the amplitudes are determined by xj , and
each bead vibrates with a common frequency f =

√
λj/2π. This type of motion

(7.6.5) is called a normal mode of vibration. In these terms, equation (7.6.4)
translates to say that every possible mode of vibration is a combination of the
normal modes. For example, when n = 3, the matrix in (7.6.2) is

A =
T

mL


 2 −1 0

−1 2 −1
0 −1 2


 with




λ1 = (T/mL)(2)
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√
2)

λ3 = (T/mL)(2 +
√

2)


 ,

and a complete orthonormal set of eigenvectors is
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
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
 .

The three corresponding normal modes are shown in Figure 7.6.3.
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Figure 7.6.3


