Therefore,

$$
\left\{\begin{array}{l}
z_{k}=\alpha_{k} \cos \left(t \sqrt{\lambda}_{k}\right)+\beta_{k} \sin \left(t \sqrt{\lambda}_{k}\right) \tag{7.6.3}\\
z_{k}(0)=\tilde{c}_{k} \\
z_{k}^{\prime}(0)=0
\end{array}\right\} \Longrightarrow z_{k}=\tilde{c}_{k} \cos \left(t \sqrt{\lambda}_{k}\right),
$$

and for $\mathbf{P}=\left[\mathbf{x}_{1}\left|\mathbf{x}_{2}\right| \cdots \mid \mathbf{x}_{n}\right]$,

$$
\begin{equation*}
\mathbf{y}=\mathbf{P} \mathbf{z}=z_{1} \mathbf{x}_{1}+z_{2} \mathbf{x}_{2}+\cdots+z_{n} \mathbf{x}_{n}=\sum_{j=1}^{n}\left(\tilde{c}_{j} \cos (t \sqrt{\lambda} k)\right) \mathbf{x}_{j} . \tag{7.6.4}
\end{equation*}
$$

This means that every possible mode of vibration is a combination of modes determined by the eigenvectors \mathbf{x}_{j}. To understand this more clearly, suppose that the beads are initially positioned according to the components of \mathbf{x}_{j}-i.e., $\mathbf{c}=\mathbf{y}(0)=\mathbf{x}_{j}$. Then $\tilde{\mathbf{c}}=\mathbf{P}^{T} \mathbf{c}=\mathbf{P}^{T} \mathbf{x}_{j}=\mathbf{e}_{j}$, so (7.6.3) and (7.6.4) reduce to

$$
z_{k}=\left\{\begin{array}{ll}
\cos \left(t \sqrt{\lambda}_{k}\right) & \text { if } k=j \tag{7.6.5}\\
0 & \text { if } k \neq j
\end{array} \Longrightarrow \mathbf{y}=\left(\cos \left(t \sqrt{\lambda}_{k}\right)\right) \mathbf{x}_{j} .\right.
$$

In other words, when $\mathbf{y}(0)=\mathbf{x}_{j}$, the $j^{\text {th }}$ eigenpair $\left(\lambda_{j}, \mathbf{x}_{j}\right)$ completely determines the mode of vibration because the amplitudes are determined by \mathbf{x}_{j}, and each bead vibrates with a common frequency $f=\sqrt{\lambda_{j}} / 2 \pi$. This type of motion (7.6.5) is called a normal mode of vibration. In these terms, equation (7.6.4) translates to say that every possible mode of vibration is a combination of the normal modes. For example, when $n=3$, the matrix in (7.6.2) is

$$
\mathbf{A}=\frac{T}{m L}\left(\begin{array}{rrr}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right) \quad \text { with } \quad\left\{\begin{array}{l}
\lambda_{1}=(T / m L)(2) \\
\lambda_{2}=(T / m L)(2-\sqrt{2}) \\
\lambda_{3}=(T / m L)(2+\sqrt{2})
\end{array}\right\},
$$

and a complete orthonormal set of eigenvectors is

$$
\mathbf{x}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right), \quad \mathbf{x}_{2}=\frac{1}{2}\left(\begin{array}{r}
1 \\
\sqrt{2} \\
1
\end{array}\right), \quad \mathbf{x}_{3}=\frac{1}{2}\left(\begin{array}{r}
1 \\
-\sqrt{2} \\
1
\end{array}\right) .
$$

The three corresponding normal modes are shown in Figure 7.6.3.

